

Introduction of SRIM Tutorials Simulation Section of Nuclear Materials Experiment

Jingyi Shi On behalf of prof. Lei Peng

School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026 China

> **2017-04-05 2017-04-10**

Outline

Tutorial 1: Introduction to Ion Ranges, Does and Damage

Tutorial 2: Target Mixing and Sputtering

Tutorial 3: Building Complex Targets

Tutorial 4: Calculations of Target Damage

Outline

Tutorial 1: Introduction to Ion Ranges, Does and Damage

Tutorial 2: Target Mixing and Sputtering

Tutorial 3: Building Complex Targets

Tutorial 4: Calculations of Target Damage

SRIM Tutorials 1: Introduction to Ion Ranges, Does and Damage

Objective

To find the energy and dose of ions required to implant atoms into a target at given depth and concentration.

Case

To simulate the implantation of n-well of a CMOS semiconductor device.

Parameters

- **1. Ions: N-type dopant-Phosphorus(P)/ Arsenic(As)/ Antimony(Sb) (VB);**
- **2. Target: Silicon;**
- **3. Peak concentration depth: 250 nm;**
- **4. Peak dopant concentration: 5x10¹⁸ atoms/cm³ .**

Experimental condition

The maximum energy of the accelerator is limited to 200 keV.

Questions

- **1. Which element will your use and how to set its energy?**
- **2. What dose is required (ions/cm²)?**
- **3. Will the target be amorphous after the implant?**

Element and energy of implanted ion

Recall the implanted ion should be chosen from VB column in periodic table and the peak concentration depth is 250 nm.

First, the As is chosen as implanted ion.

The target is silicon.

The default name of the output file is set by element name of ion and target.

To reach the peak concentration depth 250 nm, the energy of implanted ion As should be up to 400 keV.

Conclusion: This is a higher energy t **han your** 200 **implanter can reach.**

Then Recalculate the Range Tables using implanted ions.

中国科学技术大学 **University of Science and Technology of China**

Phosphorus in Silicon

This table shows that we can implant the n-well with a peak at 2500 Å (250 nm) using Phosphorus ions at 190 keV (interpolating between the two ranges shown).

TRIM setup

Trajectories of ions and recoil atoms

The ion track shows a red dot wherever the ion creates a vacancy (knocks a silicon atom away from its lattice site). The green dots are vacancies caused by recoiling silicon atoms.

Distribution of ions and recoil atoms

$$
\frac{Atoms / cm^3}{Atoms / cm^2} * (ions / cm^2) = Atoms / cm^3
$$

Implanted dose of P

Recall we need the peak dopant concentration is 5x10¹⁸ atoms/cm³ .

```
According to the distribution of ions:
The peak concentration is 5x104
(atoms/cm3
)/ (atoms/cm2
).
```
So the final implanted dose we required is 5x10¹⁸/ 5x10⁴= 10¹⁴ions/cm² .

Will the target be amorphous after the implant?

We noticed that the peak concentration of recoil atoms is 10⁸ (atoms/cm³)/ (atoms/cm²).

When the implanted dose of P is 5x10¹⁴ions/cm² , the concentration of displaced silicon atoms near peak is 5x10²² atoms/cm³ .

Recall the density of silicon is about 5x10²² atoms/cm³ .

It indicated that under this dose, all atom at peak of damage distribution will be displaced once.

Damage Events

The number of vacancies at peak is about 1.0 vacancies/Å-Ion.

> **1.0 vacancies/Å-Ion = 10⁸ vacancies/cm-Ion**

Assuming that 99% of the damage instantly anneals (i.e. leaving only 1% damage) and the implant dose is 10¹⁵ ions/cm² , the total vacancies is 10⁸ vacancies/cm-Ion* 10¹⁵ ions/cm² = 10²³ vacancies/cm³

Based on that only 1% was retained, The final stable vacancies density is 10²¹ vacancies/cm³

The damage degree of silicon is about 2%.

\triangleright Total displacements

移位碰撞的数目表明有多少靶原子在级联过程中离开原来的晶格位 置。

\triangleright Total vacancies

靶中空位的数目表明靶原子离开原来的晶格位置而留下空位的数目**。** \triangleright Replacement collisions

复位碰撞 运动的原子将晶格原子撞出后因能量降低,留在晶格位 置,不产生空位 。

Displacements = Vacancies + Replacement Collisions 移位原子=空位+复合碰撞

Vacancies = Interstitials + (Atoms which leave the target volume) 空位=间隙原子+离开靶的原子

Outline

Tutorial 1: Introduction to Ion Ranges, Does and Damage

Tutorial 2: Target Mixing and Sputtering

Tutorial 3: Building Complex Targets

Tutorial 4: Calculations of Target Damage

SRIM Tutorials 2: Target Mixing and Sputtering

Physical background

Interface Mixing

The transport of atoms from one layer of a target into another layer.

Recoil implantation

The process of recoil mixing is used to modify materials on purpose.

Sputtering

The opposite of Recoil Implantation. Here, surface atoms are removed from the target by creating recoil cascades that come back out of the target, and which give surface atoms enough energy so that they are driven away from the target.

Sputtering yield

Sputtering Yield = (Number of Sputtered Atoms) / (Number of Incident Ions)

TRIM Demo

Distribution of Recoil Silicon Distribution of Recoil Platinum

Trajectory of Single Incidence Ion and Recoil Atoms

The big cascades rapidly lose any forward direction and become isotropic.

Distribution of Recoil Platinum Atoms

It shows that some Pt atoms have recoiled far back from the Pt layer – within 100 Å of the **surface, and others have reached the back edge of the target.**

Sputtering yield (Integral)

The sputtering yield is very sensitive to the surface binding energy (SBE).

At 3.1 eV, the number of atoms which reached the surface with more than this energy is about 7. This is the number of atoms sputtered, and it agrees with the number we saw in the SPUTTERING YIELD table above.

Sputtering yield (Differential)

This plot is the differential of the previous Integral plot. The Integral Plot shows the number of atoms reaching the surface with a given energy of more.

Extreme example of sputtering

Extreme example of sputtering

Damage type: Surface Sputtering. Width: 30 Å

Extreme example of sputtering

The spacing between atoms in Nickel is slightly more than 2 Angstroms, and this is the separation between the groups of crescent red dots.

Extreme example of sputtering

The slope of the integral of atom energies is much steeper than for the previous silicon target. If the surface roughens, and the Surface Binding Energy of the target is reduced, the sputtering yield may go up 2x or even 3x.

SUMMARY

- **Interface Mixing can be a large effect with atoms moving more than 100 Å from initial position.**
- **Significant number of atoms move towards the surface. These also can move long distances.**
- **Sputtering can rapidly erode the surface with more than 5 atoms leaving for each incident ion.**
- **Some atoms which sputter come from deep in the target, as seen for the Pt atoms which sputter from more than 200 Å below the surface.**

Review

Tutorial 1: Introduction to Ion Ranges, Does and Damage

1. How to find the energy and dose of ions required to implant atoms into a target at given depth and concentration?

2. How to calculate the damage deposited to target which was produced by the ion? Will the target be amorphous after the implant?

3. How to use the SR table to quickly get the range of ions with different incident energy?

4. How to setup the TRIM based on experimental parameters?

Tutorial 2: Target Mixing and Sputtering

- 1. The interface mixing, recoil implantation, sputtering yield.
- 2. The importance of recoil cascade to interface and sputtering.
- 3. The closed relationship between sputtering yield and surface binding energy.

Outline

Tutorial 1: Introduction to Ion Ranges, Does and Damage

Tutorial 2: Target Mixing and Sputtering

Tutorial 3: Building Complex Targets

Tutorial 4: Calculations of Target Damage

SRIM Tutorials 3: Building Complex Targets

Objective

To build a complex target: a Gas Ionization Detector for energetic ions with both Gas and Solid volumes.

Case

To simulate a Gas Ionization Detector.

Parameters

TRIM setup

◆ Ion Data:

- **1. Ion species: Helium**
- **2. Incident energy: 5 MeV (5000 keV)**
- **3. Angle of incidence: normal (0°)**

◆ Target Data:

Three layers complex target.

- **1. Surface thin film: Paralene "C", 1 m**
- **2. Long cylinder of gas: P-10 gas(10%CH⁴ and 90% Ar), 4.9 cm**
- **3. Brass beam stop: brass, 2.5mm**

TRIM setup

中国科学技术大学 **University of Science and Technology of China**

Common Compounds

Trajectories of ions

University of Science and Technology of China

Change range

SRIM Tutorials 3

End range of ions

The He beam remains tightly focused until the He energy drops below 100 keV, or 2% of its original energy of 5 MeV.

Ion distribution

- **Nice Gaussian shape**
- **Straggle only 2%**

Ionization

~ strom ð, \mathbf{a} \mathbf{r} ⋗ Φ ◡ ω \mathbf{Q}_2 Q $\overline{}$ ▶ තු ⊱ $\ddot{\Phi}$ $E_{\rm B}$

Phonons distribution

Outline

Tutorial 1: Introduction to Ion Ranges, Does and Damage

Tutorial 2: Target Mixing and Sputtering

Tutorial 3: Building Complex Targets

Tutorial 4: Calculations of Target Damage

SRIM Tutorials 4: Calculations of Target Damage

Objective

Detail calculate the target damage during implantation.

Case

Refer to tutorials 1.

Parameters

Refer to tutorials 1.

Normally, implanting at room-temperature, 300 K, will cause most of the implantation damage to "self-anneal" since the lattice atoms have adequate energy to allow simple target damage to regrow back into its original crystalline form.

However, there are no thermal effects in SRIM, so the damage which is calculated is that which would happen for an implantation at 0 K.

TRIM setup

Ionization

Ionization is energy loss to the target electrons.

Phonons

Phonons are energy stored in atomic vibrations in a crystal.

Ion: 190 keV x 0.44% = 836 eV

Recoils: 190 keV x 29% = 55 keV

Damage Creation in the Target

ENERGY TO RECOILS

Both plots are identical for a single element target, since all the energy deposited by the ions will be absorbed by silicon atoms.

Damage Creation in the Target

Total Displacements = Total Vacancies + Replacement Collisions

DPA Calculation VACANCY File

Courtesy of Prof. Gao at Umich

DPA Calculation

SRIM calculation Experiments п ٠ Current = $I = \frac{C}{s} = \frac{\text{Ions} * q}{s}$ $D =$ damage rate to sample from SRIM calculation (peak) vacancies $A = area of the ion beam cross section$ ion-Angstrom $q = ion charge$ ρ = sample density $M =$ mass number of sample $Flux = \phi = \frac{\text{ions}}{\text{cm}^2 - \text{s}} = \frac{I}{q * A}$ Fluence = Flux * time = ϕ * t = $\Phi = \frac{\text{ions}}{cm^2}$ Number density = $N = \frac{\rho^* N_A}{M}$ $dpa_{\text{rate}} = \frac{D^* \phi}{N} = \frac{\text{vacancies}}{\text{ion}-\text{cm}} \frac{\text{ions}}{\text{cm}^2 - \text{s}} / \frac{N_a}{\text{cm}^3} = \frac{\text{vacancies}}{N_a \text{s}}$ $dpa = {D * \Phi \over N} = {Total vacancies \over N_a}$ **Watch Units!!**

Courtesy of Prof. Gao at Umich

Thanks for your attentions!